Dual Targeted Therapy with p53 siRNA and Epigallocatechingallate in a Triple Negative Breast Cancer Cell Model
نویسندگان
چکیده
Triple-negative breast cancer (TNBC) is a highly aggressive phenotype that is resistant to standard therapy. Thus, the development of alternative therapeutic strategies for TNBC is essential. The purpose of our in vitro study was to evaluate the impact of p53 gene silencing in conjunction with the administration of a natural compound, epigallocatechingallate (EGCG). RT2Profiler PCR Array technology was used to evaluate the impact of dual treatment on the main genes involved in apoptosis in the Hs578T cell culture model of TNBC. Gene expression analysis revealed 28 genes were significantly altered (16 upregulated and 12 downregulated) in response to combined p53 siRNA and EGCG treatment. Further analysis revealed that p53 siRNA and EGCG dual therapy leads to the activation of pro-apoptotic genes and the inhibition of pro-survival genes, autophagy, and cell network formation. These results indicate that this dual therapy targets both the apoptotic and angiogenic pathways, which may improve treatment effectiveness for tumors resistant to conventional treatment.
منابع مشابه
Stimuli-Responsive Mesoporous Silica NPs as Non-viral Dual siRNA/Chemotherapy Carriers for Triple Negative Breast Cancer
Triple negative breast cancer (TNBC) is the most aggressive and lethal subtype of breast cancer. It is associated with a very poor prognosis and intrinsically resistant to several conventional and targeted chemotherapy agents and has a 5-year survival rate of less than 25%. Because the treatment options for TNBC are very limited and not efficient enough for achieving minimum desired goals, shif...
متن کاملGene Expression Changes in Pomegranate Peel Extract-Treated Triple-Negative Breast Cancer Cells
Background: Triple-negative breast cancer (TNBC) is treated with highly aggressive non-targeted chemotherapies. Safer and more effective therapeutic approaches than those currently in use are needed. Natural pomegranate peel extract (PPE) has recently been found to inhibit breast cancer progression; however, its mechanisms of action remain unclear. We hypothesized that transcriptional chan...
متن کاملPI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملDopamine-conjugated apoferritin protein nanocage for the dual-targeting delivery of epirubicin
Objective(s): Nanocarriers are drug delivery vehicles, which have attracted the attention of researchers in recent years, particularly in cancer treatment. The encapsulation of anticancer drugs using protein nanocages is considered to be an optimal approach to reducing drug side-effects and increasing the bioavailability of anticancer drugs. Epirubicin (EPR) is an active chemotherapeutic medica...
متن کاملTargeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment
Triple negative breast cancers are an aggressive subtype of breast cancer, characterized by the lack of estrogen receptor, progesterone receptor and Her2 expression. Triple negative breast cancers are non-responsive to conventional anti-hormonal and Her2 targeted therapies, making it necessary to identify new molecular targets for therapy. The chemokine CCL2 is overexpressed in invasive breast ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015